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ABSTRACT 
 

In this thesis, we aim to use electronic health records (EHRs) to predict 

sepsis and in-hospital mortality by using machine learning algorithms. We first 

explored EHRs dataset and performed data cleansing. Then, we extracted 57 

features using data of vital signs and white blood cell (WBC) count. Two 

classification algorithms (i.e., random forest and neural network) were used to 

develop predictive models using the data from the first few hours after admission 

to predict sepsis and in-hospital mortality. In addition, we also used the data 

collected in the last few hours before sepsis developed to predict sepsis.  

The results show promise in early prediction of sepsis and possibly 

providing an opportunity for directing early intervention efforts to prevent or treat 

sepsis. 
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CHAPTER ONE  
BACKGROUND AND DATA 

 

1.1 Introduction 
 
Sepsis is the systemic inflammatory response to severe infection, typically 

pneumonia, gastrointestinal or urinary tract infection [1], and can cause serious 

consequences for patients. The mortality rate following sepsis can reach up to 

30%, with 50% and 80% for severe sepsis and septic shock, respectively [1]. Once 

a patient develops sepsis, the mortality rate goes up when left untreated. 

Therefore, detection of high-risk patients is necessary in order to decrease 

mortality through early intervention and optimal care.  

Because sepsis is a system inflammatory response to infection, it is 

generally associated with elevated heart rate, temperature, and respiratory rate, 

as well as either low or high white blood cell (WBC) count. Accordingly, healthcare 

providers currently rely on patients’ physiological symptoms to identify sepsis 

cases [2]. For instance, Systemic Inflammatory Response Syndrome (SIRS) 

criteria, which was introduced in 1992, categorizes a patient as septic from having 

two or more of the symptoms presented in Figure 1 [2]. In 2016, Sepsis-3 was 

introduced to replace the SIRS criteria with a new risk-stratification tool. In Sepsis-

3, sepsis is defined as life-threatening organ dysfunction caused by a dysregulated 

host response to infection [3]. Quick Sequential Organ Failure Assessment 

(qSOFA) was also introduced within Sepsis-3 to be used with patients who have  

suspected infection and are likely to have prolonged stay in Intensive Care Units 
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Figure 1: SIRS and qSOFA criteria 

 
or to expire in the hospital [3]. The validation of Sepsis-3 and also qSOFA are 

subjects of ongoing research [4]. Identifying septic patients using these recent 

definitions and assessment tools is somewhat complex, which coupled with the 

lack of requisite data, may not be practical in our dataset [4]. Hence, in this study 

we opt to use the well-established SIRS criteria. 

 

1.2 Objectives 
 
The goal of this study was to retrospectively analyze historical electronic health 

records (EHRs) data to develop models that can predict sepsis and in-hospital 

mortality. Specifically, we used powerful machine learning techniques on 

physiological information collected shortly after admission to predict future 

incidence of sepsis and in-hospital mortality. In addition, we used these techniques 
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on the physiological information collected shortly leading to incidence of sepsis to 

draw insights about the changes in patient symptoms. In general, these models 

can help healthcare practitioners in early detection of sepsis and provide patients 

with timely, personalized treatments before a sharp increase in the risk of 

developing sepsis or in-hospital mortality.  

The time of sepsis is generally not recorded in EHRs. Hence, in this study, 

we categorized patients as septic as soon as they meet the well-accepted SIRS 

criteria. In addition, in this study we limited our attention to adult patients diagnosed 

with pneumonia, a group that is highly susceptible to sepsis.  

 

1.3 Literature Review 
 
There exists an extensive body of work on the use of data-driven models to predict 

sepsis or mortality. Most studies developed predictive models using machine 

learning algorithms with data collected from Intensive Care Unit (ICU) or 

emergency rooms (ERs). Awad et al. [5] used the MIMIC II [6] data of patients age 

16 or older within a single ICU to predict in-hospital mortality using random forest, 

the predictive Decision Trees, the probabilistic Naive Bayes, and the rule-based 

Projective Adaptive Resonance Theory models. They conducted five experiments 

with different datasets (e.g., original dataset, modified datasets using the Synthetic 

Minority Oversampling Technique (SMOTE), replaced missing values by applying 

an algorithm). Random forest mostly outperformed other machine learning 

algorithms.  
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Jaimes et al. [7] used ERs data of patients age 15 or older with suspected or 

confirmed bacterial infection as admission diagnosis and having at least one of the 

symptoms in SIRS criteria. Data were collected from two hospitals located in 

Columbia. The goal of this study is to compare predictions of mortality within the 

first 28 days after admission to the ER using logistic regression and neural 

networks. Neural network outperformed logistic regression by having higher areas 

under the receiver operator characteristic (ROC) curves.  

Taylor et al. [8] used emergency department (ED) visits data of patients age 18 

or older and developed sepsis as meeting SIRS criteria with infectious admitting 

diagnosis to predict in-hospital mortality by using random forest, classification and 

regression tree (CART), logistic regression, and previously developed clinical 

decision rules (CDRs). Their results show that random forest outperformed other 

models and had the highest area-under-the-curve (AUC) under ROC. Gultepe et 

al. [9] used EHRs of adult patients who met a minimum of two on SIRS criteria and 

were admitted through ED using support vector machine (SVM) and Bayesian 

network (BN) to predict lactate level and mortality. These models were trained for 

sepsis patients, and all patients regardless of sepsis status, and achieved 

accuracies of up to 72.8% and 71.5% in predicting mortality, respectively. 

Three studies below used data from EHR to develop models for early detection 

of sepsis. Giuliano et al. [10] used Project IMPACT dataset of adults with an 

admitting ICU diagnosis of sepsis to assess the predictive value of early detection 

of sepsis using physiological data recommended by the Surviving Sepsis 
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Campaign (SSC). They obtained an accuracy of approximately 62% in predicting 

sepsis using the logistic regression algorithm. 

Giannini et al. [11] developed a real-time machine-learning algorithm by training 

random forest on EHR data to predict patients with risk of having severe sepsis 

and/or septic shock. They deployed the system in “silent mode” for two months 

and the results show that they achieved positive and negative predictive values of 

29% and 97%, respectively. Another study [12] used data from the ICU to detect 

sepsis in real-time using decision trees (DT), SVM, and Naïve Bayes (NB) 

algorithms. All developed models successfully detected all patients experiencing 

severe sepsis and septic shock, except for the NB algorithm that misclassified only 

one septic shock patient as a severe sepsis patient, resulting in an accuracy of 

99.82%. 

 

1.4 Dataset 
 
We used the data pulled from the Health Facts® (HF) dataset [13]. The de-

identified dataset was provided by the Center for Health Systems Innovations 

(CHSI) at Oklahoma State University. The dataset contains EHRs from 

approximately 490 hospitals under Cerner Corporation, collected over 

approximately 14 years. The dataset includes the details of patients’ demographics 

(e.g., gender, age, marital status, race), patients’ information (e.g., admitted 

information, discharged information), clinical events (e.g., vital signs), lab 

procedure results (e.g., WBC count), medications administered (e.g., name of 
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medication, order strength of medication), and diagnosis information (e.g., 

International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-

9) code [14]). Data were extracted from HF dataset based on diagnosis code that 

started with 486 or 995.9 under ICD-9 code.  

We used MySQL [15] to create a database that would allow us to store and 

extract high volume EHRs dataset for future use. We imported EHRs dataset to 

MySQL using Python language [16] along with mysql.connector library [17], and 

SQL. Data import process was done by importing one table at a time.  

 

1.5 Data Cleansing 
 
SQL was used to extract appropriate data for analyses. We extracted patient 

encounters’ information (e.g., demographics, admission and discharged 

information), and diagnosis information. Vital signs (e.g., heart rate, respiratory 

rate, temperature), and White Blood Cell (WBC) count were extracted on a year-

by-year basis due to the volume of data. We only focused on data that was 

collected from years 2008 to 2015. 

As in most clinical datasets, our EHR dataset contains null values and 

duplicated observations, especially under patient encounters, clinical events, and 

lab procedure results tables. During data exploration, we found that the number of 

missing data of vital signs and WBC count were relatively low, compared to the 

number of missing data in temperature as shown in Table 1. Note that the numbers 
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that are shown in this table are the total number of data points from 2008 to 2015 

before data cleansing or limiting any patient encounters for analyses. 

 

Table 1: Number of missing values 

 Heart rate Respiratory 
rate Temperature WBC count 

Number of 
missing value 598,778 649,257 17,257,984 12,336 

Total number 
of data points 40,839,761 48,099,417 39,818,969 4,260,964 

Percentage (%) 1.47 1.35 43.34 0.29 
 

For this analysis, null observations were removed and among duplicated 

observations with the same date and time, the one with the larger result value was 

kept. Because the data were collected from multiple institutions over a long time-

span, there were major inconsistences across the units in which the data were 

reported, especially for vital signs and WBC count. Table 2 shows some units that 

were appeared under heart rate and respiratory rate in EHRs dataset. Hence, we 

converted the data when necessary. For instance, units in temperature (i.e. degree 

Fahrenheit) were converted to degree Celsius.  

In addition, not all data was clinically meaningful after unit conversion. Hence, 

we removed the entries that fell outside of the following ranges: A respiratory rate 

between 4 and 60 breaths per minute, temperature between 32.2 and 41.1 degree 

Celsius, heart rate between 30 and 200 beats per minute [18], and WBC count 

between 500 and 50,000 cells/µL [19]. 
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Table 2: Units of heart rate and respiratory rate 

Type Unit 

H
ea

rt
 R

at
e 

Beats per minute 
Milliseconds 

Not Mapped 

Pacing Rate (Pacing Beats per Minute) 
Second 
NA 

R
es

pi
ra

to
ry

 R
at

e Beats per Minute 
Breaths per Minute 
Millimeters Mercury 
Minute 
Not Mapped 
per Minute 
NA 

 

Specifically, here we only focused on data from 2008 to 2015 on adult patients 

(18 years or older) who were admitted due to either physician or clinical referral, 

and were diagnosed with pneumonia, captured by the ICD-9 code [14]. Table 3 

summarizes the demographics of patients who were diagnosed with pneumonia 

and admitted with referrals. 
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Table 3: Summary of demographics 

Total patient encounters (n) 332,006 

Gender 

Female 52.73 % 

Male 47.25 % 

Race 
Asian or Pacific Islander 1.22 % 

African American 14.66 % 

White 79.36 % 

Other/ Unknown 4.76 % 

Marital Status 
Married 43.83 % 

Widowed 18.84 % 

Single 22.58 % 

Divorced 11.88 % 

Unknown 2.87 % 

Payer Code 
Private/HMO 20.49 % 

Medicaid 7.88 % 

Medicare 46.32 % 

Self-pay/uninsured 5.10 % 

Other 20.21 % 

Age (years) 63.56±18.41 

Length of Stay (hours) 97.43±739.62 
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CHAPTER TWO  
PREDICTIVE MODELS 

 

 2.1 Response Variables and Features 
 
We used two response variables in this study, namely, in-hospital mortality and 

sepsis. For in-hospital mortality, we used the discharge description which was 

recorded under the patient encounters table. We eliminated observations 

corresponding to “not mapped” and “unknown”, as well as null values.  

The EHRs did not contain the time of sepsis if it was developed. Hence, we 

used the well-established SIRS criteria [2] to estimate the time of sepsis if it 

occurred. This process was done by developing a for loop in Python [16]. We first 

converted result values of vital signs and WBC count to either zero or one. If a 

result value qualified as one of the symptoms under SIRS criteria shown in Figure 

1, then we assigned the result value as one. Otherwise, we assigned the result 

value as zero. After the assignment of result values, we combined rows of data 

with new assigned result values of vital signs and WBC count. Then, we ordered 

rows of data by patient encounters’ ID, and event date and time. The for loop was 

developed to sum result values for each patient’s encounter ID. Patient encounters 

with summation of two on their result values would be marked as they developed 

sepsis. Specifically, we retrospectively examined each patient encounter to 

determine whether they acquired sepsis and if so, collect its initiation time. 

We used a total of 57 features, including both categorical and continuous 

variables as shown in Table 4. Categorical variables include demographics  
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Table 4: Features used in predictive models 

Demographics 

Age groups: 18-44 years old, 45-64 years old, ≥65 years old 

Gender: Male, Female 

Race: Asian or Pacific Islander, African American, White, 

Other 

Marital status: Married, Widowed, Single, Divorced, 

Unknown 

Payer code: Private/HMO, Medicaid, Medicare,  

Self-pay/uninsured, Other 

Features below were applied to heart rate, respiratory rate, temperature, and 
WBC count 

Basic statistics Minimum, maximum, mean, standard deviation 

Signal information Shannon Entropy 

Differences in 
consecutive values 

Minimum, maximum, mean, standard deviation 

Proportional 
differences 

Minimum, maximum, mean, standard deviation 
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information, such as gender, race, payer code, and age groups [20]. Continuous 

variables included: information on vital signs, namely, heart rate, respiratory rate, 

and temperature, as well as WBC count. We calculated the basic statistics, such 

as minimum, maximum, and standard deviation, as well as information entropy, 

particularly Shannon entropy [21], for all of the four continuous variables. All 

continuous variables were calculated for each patient encounter by using Pandas 

library [22] in Python [16]. 

In addition, when possible, we generated features based on changes in 

consecutive clinical events. That is, we calculated the differences in consecutive 

values, as well as the proportional differences. Specifically, the differences in 

conservative values were calculated by finding the difference between consecutive 

observations for each vital sign and WBC count. The proportional differences were 

calculated when dividing the differences in conservative values from vital signs and 

WBC count by the difference of time between these consecutive observations. We 

then calculated the basic statistics of these features.  

Note that to generate the differences in consecutive values and the proportional 

differences features, we need at least two values. Hence, due to the low frequency 

of data collection for some features, such as WBC count, differences in 

consecutive values and the proportional differences features may not be 

calculated. Therefore, we performed the analysis in two ways: (1) Kept the 

differences in consecutive values and the proportional differences features and 

removed patients from the dataset with fewer than two entries for vital signs or 
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WBC count, and (2) removed the differences in consecutive values and the 

proportional differences features and kept the patients for whom the parameter 

may not be calculated.  

The datasets that were used for analyses contained patient encounter ID, 

features for each patient encounter, and a response variable depending on the 

goal of analysis. For instance, the prediction of sepsis would contain a response 

variable that indicated whether the patient encounter acquired sepsis.  

 

2.2 Experiments 
 
We performed three main experiments as follows: 

Experiment I: Use the EHRs data from the first 12, 24, and 48 hours after 

admission to predict which patients would develop sepsis; 

Experiment II: Use the EHRs data from the first 12, 24, and 48 hours after 

admission to predict which patients would expire; 

Experiment III: Use the EHRs data from the 12, 24, and 48 hour-windows 

leading to sepsis to predict which patients would develop sepsis.  

We used two feature subsets as follows: 

(a) All features 

(b) All features except differences in consecutive values and proportional 

differences  

For each experiment, the dataset was refined to only include patients who had 

length of stay (LOS) longer than the number of hours used in the corresponding 
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analysis. For instance, in Experiment I, when predicting which patients would 

acquire sepsis using the EHR data from the first 12 hours after admission, we 

excluded patients who acquired sepsis within the first 12 hours as shown in Figure 

2. Note that LOS was calculated from the difference of admission time and 

discharge time.  

 
Figure 2: Visualization of Experiment I using 12 hours after admission 

 

2.3 Classification Algorithms 
 
In this study, we used two classification algorithms, namely random forest [23] and 

neural network [24]. Random forest is an ensemble learning method and can be 

used in classification and regression problems. Random forest relies on the 

aggregate results from a series of decision trees. We particularly used random 

forest in this study as the algorithm is very robust against overfitting due to 

randomly selecting subset of features at each split as it grows decision trees [23]. 

In addition, we replicated the analysis using the artificial neural network algorithm. 

Neural network has been widely applied in healthcare applications as it can deduce 

the non-linear relationship between independent and dependent variables, as well 

as the interactions between features [25]. We used Python 2.7 [16] for 
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implementation. Specifically, we used Scikit-learn library [26] to develop random 

forest models and used Tensorflow library, developed by Google [27], to construct 

fully connected neural networks. We partitioned the dataset into 70%, 15%, and 

15% for training, validation, and test sets. Based on the results of our preliminary 

experiments, we opted out of tuning hyper-parameters for random forest models, 

hence we combined training and validation datasets while training random forest 

models.  

Our training datasets were, in general, highly unbalanced with respect to 

the response variables, e.g., there were approximately nine times more instances 

of expired patients than non-expired patients in the cleansed dataset under 

Experiment I with feature subset (a). To ensure that the developed models do not 

favor the more represented observations in the dataset, we used the 

downsampling technique to generate a series of balanced sub training datasets 

from the initial training dataset and exploited warm-starting to achieve higher 

accuracy. The visualization of the downsampling technique is shown in Figure 3 

by assigning the gray color block to be the over-represented class and orange 

block to be the under-represented class. The right side of this figure is an example 

of a balanced dataset that was generated using the downsampling technique, 

which contained all data of under-represented class and the same amount of data 

from over-represented class.  

Specifically, for random forest, we developed a 700-tree forest by building 

one tree at a time on a new sub-training set, while applying warm-starting 
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         Figure 3: Visualization of downsampling technique 

 

technique, and aggregating them into one model. Warm-starting allows us to reuse 

the solution to the previous call to fit function [28]. 

For neural network, we used tf.contrib.learn under Tensorflow library [27], 

which allowed us to create models while applying warm-starting. Specifically, we 

trained a model on a sub training set while applying a warm-starting method and 

moved on to the next sub training set when the accuracy of the validation set 

started to decrease. The procedure terminated when the accuracy of the validation 

set did not increase when transitioning to the next sub training set. We used two 

optimizers in neural network models. We used stochastic gradient descent (SGD) 

optimizer for Experiments I and II, and the Adaptive Moment Estimation (Adam) 

optimizer for Experiment III. Adam optimizer can deal with sparse gradients and 

non-stationary objectives [29], because it combines the advantages of AdaGrad 
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[30] and RMSProp [31] optimizers. Initially, we used SGD optimizer for Experiment 

III, however the validation accuracy reflected that the models did not performed 

well. Therefore, we changed optimizer from SGD to Adam. Note that each neural 

network model required parameter tuning (e.g., number of hidden layers, number 

of hidden nodes, learning rate) to optimize the performance for a model. The 

screenshot of partial architecture of neural network with three hidden layers that 

was constructed using Tensorflow library [27] is shown in Figure 4. The screenshot 

was captured from TensorBoard, which is a suite of web applications for inspecting 

and understanding Tensorflow runs and graphs [32]. Finally, the best trained 

models were applied on the corresponding, separate test sets to objectively 

evaluate the performance of the models.  

 

 
Figure 4: Visualization of neural network 
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2.4 Metrics 
 
For all experiments, we report the accuracy and F1 score for the separate test sets 

to evaluate and compare the models. Confusion matrix can be produced based on 

prediction results using ConfusionMatrix function under pandas_ml library [33]. 

Accuracy gives the proportion of predicted values that match the true response 

value, and can be calculated by using accuracy_score function under Scikit-learn 

library [26]. F1 score is a weighted average of precision and recall, which can 

effectively evaluate the applicability of models in practice, especially when the 

dataset is unbalanced. Classification_report function under Scikit-learn library [26] 

was used to calculate F1 score. Formula for F1 score is shown below. 

 

𝐹 − 1	𝑠𝑐𝑜𝑟𝑒 =
2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)  

where,  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

 

2.5 Results 
 
In our dataset, the average LOS of patients who developed sepsis was 179.14 

hours, compared to 53.96 hours for the average LOS of patients who did not 
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develop sepsis. Figure 5 presents the breakdown of the dataset with respect to 

meeting SIRS criteria along with the discharged description. Consistent with our 

experiments, in the figure we stratify patients based on their LOS, i.e., LOS more 

than 12, 24 and 48 hours, as well as meeting SIRS criteria. We report the raw 

numbers and percentage of patients in each subcategory. For instance, out of the 

total of 332,006 patients remained in the dataset after cleansing, 261,258 (or 

approximately 79%) have a LOS that is greater than 12 hours, out of which 106,938 

(41%) acquired sepsis at some point. Approximately 27% of patients with a LOS 

greater than 12 hours, acquired sepsis after 12 hours, i.e., 73% of patients 

acquired sepsis within the first 12 hours after admission. This highlights the 

importance of predicting/detecting sepsis immediately, or within only a few hours, 

after admission. However, this task is very difficult with current EHR systems that 

mostly require manual data entry. Hence, it is important to complement current 

EHR systems with automated data acquisition systems that can collect and store 

high frequency data without direct clinician intervention to be able to leverage the 

data in early detection/prevention of sepsis. 

Table 5 and Table 6 summarize the results of Experiment I, i.e., predicting 

sepsis, using feature sets (a) and (b), respectively. As seen in Table 5, the best 

accuracy and F1 scores across the two models range from 61%-64% and 67%-

75%, respectively. As seen in the table, the prediction accuracy and F1 score do 

not seem to be very sensitive with respect to the data collection window. This is  
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Figure 5: The breakdown of the dataset with respect to meeting SIRS criteria along with the 

discharged description 
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Table 5: Results of Experiment I with feature set (a) 

Data Collection 
Window 

Neural Networks Random Forest 

Accuracy F1 score 
 

Accuracy 
 

F1 score 

First 12 hours 
after admission 58% 64% 61% 60% 

First 24 hours 
after admission 57% 70% 64% 67% 

First 48 hours 
after admission 62% 75% 60% 66% 

 

Table 6: Results of Experiment I with feature set (b) 

Data Collection 
Window 

Neural Networks Random Forest 

Accuracy F1 score 
 

Accuracy 
 

F1 score 

First 12 hours 
after admission 54% 69% 65% 66% 

First 24 hours 
after admission 56% 70% 63% 66% 

First 48 hours 
after admission 67% 80% 61% 67% 
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mainly because of the trade-off between having more information but fewer 

observations when training models using larger window sizes. As seen in Table 6, 

the best accuracy and F1 scores across the two models range from 63%-67% and 

69%-80%, respectively. Hence, using feature set (b), in general, results in higher 

performances, which again may be attributed to the trade-off between having more 

information but fewer observations when training models. In general, neural 

network models seem to perform better in our study when less training data is 

available (i.e., with 48 hour windows).  

Table 7 and Table 8 summarize the results of Experiment II, i.e., predicting 

mortality, using feature sets (a) and (b), respectively. As seen in Table 7, the best 

accuracy and F1 scores across the two models range from 85%-90% and 92%-

94%, respectively. As seen in Table 8, the best accuracy across the two models 

ranges from 92%-93% and the best F1 scores equal 96%. Consistent with the 

observations from Experiment I, neural networks models generally outperform 

random forest models and the feature set (b) results in better performance 

compared to the feature set (a).  

Lastly, Table 9 presents the results of Experiment III, i.e., predicting sepsis 

using the data collected in the time windows leading to sepsis. As expected, the 

accuracy is very high, i.e., up to 99%, in this case. Indeed the accuracy decreases 

as the window size increases as a longer window size introduces more uncertainty 

to the model. Granted, patients would most likely present symptoms in the 12-hour  
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Table 7: Results of Experiment II with feature set (a) 

Data Collection 
Window 

Neural Networks Random Forest 

Accuracy F1 score 
 

Accuracy 
 

F1 score 

First 12 hours 
after admission 85% 92% 65% 77% 

First 24 hours 
after admission 87% 93% 68% 80% 

First 48 hours 
after admission 90% 94% 69% 80% 

 

Table 8: Results of Experiment II with feature set (b) 

Data Collection 
Window 

Neural Networks Random Forest 

Accuracy F1 score 
 

Accuracy 
 

F1 score 

First 12 hours 
after admission 92% 96% 69% 81% 

First 24 hours 
after admission 93% 96% 69% 81% 

First 48 hours 
after admission 93% 96% 70% 81% 

 

Table 9: Results of Experiment III with feature set (b) 

Data Collection 
Window 

Neural Networks Random Forest 

Accuracy F1 score 
 

Accuracy 
 

F1 score 

12 hours leading 
to sepsis 88% 81% 99% 98% 

24 hours leading 
to sepsis 84% 81% 97% 97% 

48 hours leading 
to sepsis 78% 82% 92% 93% 
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window before meeting SIRS criteria, hence allowing clinicians to start treatment. 

However, when accounting for the information obtained from Experiments I and III, 

it is plausible to assume that the algorithms can help identify at-risk patients as 

early as 12 hours after admission and continue to increase in their accuracy if 

patients start to deteriorate or their risk of sepsis goes up in time. 

  



www.manaraa.com

 

25 
 

CHAPTER THREE  
CONCLUSION AND DISCUSSION 

 

3.1 Discussions, Limitations and Future Work 
 
In the future, it is foreseeable that clinicians will be able to rely on algorithms to 

predict sepsis/mortality using the data collected immediately after admission. Such 

algorithms would then enable clinicians to intervene in a timely manner to reduce 

patients’ risks of acquiring sepsis or an untimely death. Our results suggest that 

such algorithms can be developed using the currently available EHRs data and 

would perform reasonably accurate to complement clinical care. Additionally, in 

cases where patients are facing a life-limiting illness or injury, predicting mortality 

can further empower patients and their caregivers with patient-centric pain 

management, emotional and spiritual support, and hospice care when appropriate. 

In Experiments I and II, we developed models using two feature subsets 

and compared the model performances. Our results showed that the models 

generally became more accurate when more data were available for training. For 

instance, although generating features, such as differences in consecutive values 

and proportional differences in vital signs and WBC counts, make clinical sense 

when it comes to detecting sepsis/mortality, including them in the model reduced 

the number of observations and hence, reduced the model performance. We 

speculate that with adoption of automated high frequency data collection systems 

at bedside, which can store more data points for patients, features, such as 
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differences in consecutive values and proportional differences, would contribute to 

higher accuracy models.  

The developed models also allow for identifying the most important 

contributing factors to sepsis/mortality prediction. Table 10 presents the top ten 

most important features for some of the best performing random forest models 

across the three experiments. As seen in Table 10, the entropy of respiratory rate 

had the highest importance in discriminating sepsis/non-sepsis patients and 

expired/non-expired patients in both Experiments I and II when using the data from 

the first 12 hours after admission. We also obtained similar results when 

differences in consecutive values and proportional differences features were 

present when using feature set (a). Different from Experiments I and II, in 

Experiment III, i.e., predicting sepsis using the data collected in the time windows 

leading to sepsis, the maximum of the heart rates recorded was identified as the 

most important contributing factor. 

Figure 6 to Figure 8 show the plots of importance for the top ten most 

important features of three experiments from Table 10. Figure 6 shows the plot of 

importance for the top ten features of Experiment I using data from the first 12 

hours after admission. The importance of each feature was relatively close to each 

other after the top four features. Figure 7 shows the plot of feature importance from 

the top ten features of Experiment II using data from the first 12 hours after 

admission. The difference of importance for the top two features were somewhat 

large compared to differences between other consecutive features in this figure. 
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Table 10: Top ten most important contribution factors to sepsis/mortality prediction for a subset of 

random forest models. 

Rank 

Experiment I with 
feature subset (b) 
using the first 12 

hours after 
admission 

Experiment II with 
feature subset (b) using 
the first 12 hours after 

admission 

Experiment III with 
feature subset (b) using 
the 12 hours leading to 

sepsis 

1 
Entropy of respiratory 

rate 
Entropy of respiratory rate Maximum of heart rate 

2 Mean of heart rate Mean of respiratory rate 
Maximum of respiratory 

rate 

3 Maximum of heart rate Entropy of heart rate Maximum of WBC count 

4 Entropy of temperature Mean of temperature Mean of WBC count 

5 
Maximum of WBC 

count 

Standard deviation of 

respiratory rate 
Minimum of WBC count 

6 
Standard deviation of 

temperature 

Maximum of respiratory 

rate 
Minimum of temperature 

7 
Minimum of WBC 

count 
Minimum of temperature Mean of heart rate 

8 Mean of WBC count Entropy of temperature 
Standard deviation of 

respiratory rate 

9 Mean of temperature Mean of heart rate 
Standard deviation of 

temperature 

10 
Standard deviation of 

respiratory rate 
Mean of WBC count Maximum of temperature 
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Figure 6: Importance of top ten most important features in Experiment I with feature subset (b) 

using the first 12 hours after admission 

 

 
Figure 7: Importance of top ten most important features in Experiment II with feature subset (b) 

using the first 12 hours after admission 
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Figure 8: Importance of top ten most important features in Experiment III with feature subset (b) 

using the first 12 hours after admission 

 

Figure 8 shows the plot of feature importance from the top ten features of 

Experiment III using data from the first 12 hours after admission. The top two 

features had very high importance compared to the rest of the features in the plot.  

Sepsis is an important clinical event, the onset of which should be recorded 

in EHR systems. Under sepsis-1 and sepsis-2 definitions, patients who have 

infections and meet two or more symptoms under SIRS criteria [2] could be 

identified as septic. However, the true onset of sepsis for patients may only be 

identified by clinicians at bedside. Similar to most EHR systems, the system that 

had contributed to our dataset did not contain the diagnosis time of sepsis. 

Therefore, we used SIRS criteria to retrospectively approximate the time of sepsis 

in a given group of patients who had already been identified to have infection (i.e., 
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patients with pneumonia). We believe recording the time of sepsis diagnosis by 

healthcare providers would prove very helpful in building more accurate predictive 

models in the future. 

Note that sepsis definitions were published multiple times within 25 years, 

which indicated that the knowledge of sepsis is still limited. Sepsis-3 definition 

introduced new criteria, qSOFA and SOFA. We opted to use Sepsis-1 criteria in 

this study as Sepsis-3 would require keeping track of six parameters to determine 

whether patient encounters develop sepsis or not. Using the current dataset to 

mark sepsis patients with SOFA criteria would have resulted in a much smaller 

dataset with far fewer valid patient encounters. 

We lost many patient encounters due to erroneous data or missing values. 

In our exploratory analysis, we encountered major inconsistences in units, many 

clinically non-meaningful values, missing data, as well as duplicated observations 

in patients’ information and clinical events. It is most likely that these erroneous 

data or missing values were caused by data entry error, and hence, the 

observations were removed from the dataset. A more careful approach to form 

design and/or adopting automated data collection systems would reduce such 

errors and help with future algorithm developments. 

We acknowledge that the demographics used in this study were not diverse. 

The summary of demographics is shown in Table 3. The predominate race of the 

majority of patient encounters was Caucasian. Further studies need to be 
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performed to examine whether the risk factors or models translate well for other 

populations.  

3.2 Conclusions 
 
In this study, we developed models to predict sepsis and in-hospital mortality using 

EHR data. The developed models showed promise in early prediction of sepsis, 

possibly providing an opportunity for directing early intervention efforts to 

prevent/treat sepsis.  We also examined the trade-off between the number of 

observations and the amount information extracted. Our results suggested that 

having more observations in general help increase the model performance. Lastly, 

based on our results, it is clear that the algorithms can help identify at-risk patients 

as early as 12 hours after admission. This accuracy increases dramatically when 

patients are at imminent risk of developing sepsis. Hence, it is plausible that 

continuous monitoring of patients using these algorithms can pave the way for a 

streamlined and improved care process. 
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